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Climbing an 
Infinite Ladder

Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can 

reach the next rung.

From (1), we can reach the first rung. Then by 
applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  
We can apply (2) any number of times to reach 
any particular rung, no matter how high up.

This example motivates proof by 
mathematical induction.



Principle of Mathematical Induction
Principle of Mathematical Induction: To prove that P(n) is true for all 
positive integers n, we complete these steps:
 Basis Step: Show that P(1) is true.
 Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers 

k.

To complete the inductive step, assuming the inductive hypothesis that 
P(k) holds for an arbitrary integer k, show that  must P(k + 1) be true.

Climbing an Infinite Ladder Example:
 BASIS STEP: By (1), we can reach rung 1.
 INDUCTIVE STEP: Assume the inductive hypothesis that we can reach 

rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach 
every rung on the ladder.



Important Points About Using 
Mathematical  Induction
 Mathematical induction can be expressed  as the 

rule of inference

where the domain is the set of positive integers.

 In a proof by mathematical induction, we don’t 
assume that P(k) is true for all positive integers! We 
show that if we assume that P(k) is true, then           
P(k + 1) must also  be true. 

 Proofs by mathematical induction do not always 
start at the integer 1. In such a case, the basis step 
begins at a starting point b where b is an integer. We 
will see examples of this soon.

(P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n),



Validity of Mathematical Induction
 Mathematical induction is valid because of the well ordering property, which 

states that every nonempty subset of the set of positive integers has a least 
element (see Section 5.2 and Appendix 1). Here is the proof:
 Suppose that P(1) holds and P(k)→ P(k + 1) is true for all positive integers 

k. 
 Assume there is at least one positive integer  n for which P(n) is false. Then 

the set S of positive integers for which P(n) is false is nonempty. 
 By the well-ordering property, S has a least element, say m.
 We know that m can not be 1 since  P(1) holds. 
 Since m is positive and greater than 1, m − 1 must be a positive integer. 

Since m − 1 < m, it is not in S, so P(m − 1) must be true. 
 But then, since the conditional P(k)→ P(k + 1) for every positive integer k

holds, P(m) must also be true. This contradicts P(m) being false. 
 Hence, P(n) must be true for every positive integer n.



Remembering How Mathematical 
Induction Works

Consider  an infinite 
sequence  of dominoes, 
labeled 1,2,3, …, where 
each domino is standing. 

We know that the first domino is 
knocked down, i.e., P(1) is true .

We also know that  if  whenever 
the kth domino is knocked over, 
it knocks over the (k + 1)st
domino, i.e, P(k) → P(k + 1) is 
true for all positive integers k. 

Let P(n) be the 
proposition that the 
nth domino is 
knocked over. 

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.



Proving a Summation Formula by 
Mathematical Induction

Example: Show that:  

Solution:

 BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

 INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.



Conjecturing and Proving Correct a 
Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers. 
Then prove your conjecture.
Solution: We have:   1= 1, 1 + 3 = 4, 1 + 3 + 5 = 9,  1 + 3 + 5 + 7 = 16, 1 + 3 + 5 + 7 + 9 = 25.
 We can conjecture that the sum of the first n positive odd integers is n2, 

 We prove the conjecture is proved correct with mathematical induction.
 BASIS STEP: P(1) is true since 12 = 1.
 INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k) holds has well.

 So, assuming P(k), it follows that:

 Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n positive odd 
integers is n2. 

1 + 3 + 5 + ∙∙∙+ (2n − 1) + (2n + 1) =n2 .  

Inductive Hypothesis: 1 + 3 + 5 + ∙∙∙+ (2k − 1)  =k2

1 + 3 + 5 + ∙∙∙+ (2k − 1) + (2k + 1) =[1 + 3 + 5 + ∙∙∙+ (2k − 1)] + (2k + 1)
= k2 + (2k + 1)  (by the inductive hypothesis)
= k2 + 2k + 1 
= (k + 1) 2



Proving Inequalities
Example: Use mathematical induction to prove that      
n < 2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

 BASIS STEP: P(1) is true since 1 < 21 = 2.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an 
arbitrary positive integer k.

 Must show that P(k + 1) holds. Since by the inductive 
hypothesis, k < 2k, it follows that:

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ∙ 2k = 2k+1

Therefore n < 2n holds for all positive integers n.



Proving Inequalities
Example: Use mathematical induction to prove that 2n < n!, 
for every integer n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!.
 BASIS STEP: P(4) is true since 24 = 16  < 4! = 24.

 INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an 
arbitrary integer k ≥ 4. To show that P(k + 1) holds: 

2k+1 = 2∙2k  

< 2∙ k! (by the inductive hypothesis)

< (k + 1)k!

= (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Proving Divisibility Results
Example: Use mathematical induction to prove that n3 − n is 
divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 − n is divisible by 3.
 BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k3 − k is divisible by 3, 
for an arbitrary positive integer k. To show that P(k + 1) follows: 

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 

= (k3 − k) + 3(k2 + k)

By the inductive hypothesis, the first term (k3 − k) is divisible by 3
and the second term is divisible by 3 since it is an integer multiplied 
by 3. So by part (i) of Theorem 1 in Section 4.1 , (k + 1)3 − (k + 1) is 
divisible by 3. 

Therefore, n3 − n is divisible by 3, for every integer positive integer n.



Number of Subsets of a Finite Set
Example: Use mathematical induction to show that if 
S is a finite set with n elements, where n is a 
nonnegative integer, then S has 2n subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n
elements has 2n subsets.

 Basis Step: P(0) is true, because the empty set has only 
itself as a subset and  20 = 1.

 Inductive Step: Assume P(k) is true for an arbitrary 
nonnegative integer k.

continued →



Number of Subsets of a Finite Set

 Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ T and 
S = T − {a}.  Hence |T| = k.

 For each subset X of S, there are exactly two subsets of T, i.e., X and           
X ∪ {a}. 

 By the inductive hypothesis S has 2k subsets. Since there are two 
subsets of T  for each subset of S, the number of subsets of T is           
2 ∙2k = 2k+1 .

Inductive Hypothesis: For an arbitrary nonnegative integer k, 
every set with k elements has 2k subsets.



Guidelines:
Mathematical Induction Proofs


